Optimal Fluctuations and the Control of Chaos

نویسندگان

  • D. G. Luchinsky
  • S. Beri
  • R. Mannella
  • P. V. E. McClintock
  • I. A. Khovanov
چکیده

The energy-optimal migration of a chaotic oscillator from one attractor to another coexisting attractor is investigated via an analogy between the Hamiltonian theory of fluctuations and Hamiltonian formulation of the control problem. We demonstrate both on physical grounds and rigorously that the Wentzel-Freidlin Hamiltonian arising in the analysis of fluctuations is equivalent to Pontryagin’s Hamiltonian in the control problem with an additive linear unrestricted control. The deterministic optimal control function is identified with the optimal fluctuational force. Numerical and analogue experiments undertaken to verify these ideas demonstrate that, in the limit of small noise intensity, fluctuational escape from the chaotic attractor occurs via a unique (optimal) path corresponding to a unique (optimal) fluctuational force. Initial conditions on the chaotic attractor are identified. The solution of the boundary value control problem for the Pontryagin Hamiltonian is found numerically. It is shown that this solution is approximated very accurately by the optimal fluctuational force found using statistical analysis of the escape trajectories. A second series of numerical experiments on the deterministic system (i.e. in the absence of noise) show that a control function of precisely the same shape and magnitude is indeed able to instigate escape. It is demonstrated that this control function minimizes the cost functional and the corresponding energy is found to be smaller than that obtained with some earlier adaptive control algorithms. PACS numbers: 05.45.Gg, 02.50.-r, 05.20.-y, 05.40.-a

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Suppression of Chaotic Behavior in Duffing-holmes System using Backstepping Controller Optimized by Unified Particle Swarm Optimization Algorithm

The nonlinear behavior analysis and chaos control for Duffing-Holmes chaotic system is discussed in the paper. In order to suppress the irregular chaotic motion, an optimal backstepping controller is designed. The backstepping method consists of parameters with positive values. The improper selection of the parameters leads to inappropriate responses or even may lead to instability of the syste...

متن کامل

Chaotic Test and Non-Linearity of Abnormal Stock Returns: Selecting an Optimal Chaos Model in Explaining Abnormal Stock Returns around the Release Date of Annual Financial Statements

For many investors, it is important to predict the future trend of abnormal stock returns. Thus, in this research, the abnormal stock returns of the listed companies in Tehran Stock Exchange were tested since 2008- 2017 using three hypotheses. The first and second hypotheses examined the non-linearity and non-randomness of the abnormal stock returns ′ trend around the release date of annual fin...

متن کامل

Hybrid Control to Approach Chaos Synchronization of Uncertain DUFFING Oscillator Systems with External Disturbance

This paper proposes a hybrid control scheme for the synchronization of two chaotic Duffing oscillator system, subject to uncertainties and external disturbances. The novelty of this scheme is that the Linear Quadratic Regulation (LQR) control, Sliding Mode (SM) control and Gaussian Radial basis Function Neural Network (GRBFNN) control are combined to chaos synchronization with respect to extern...

متن کامل

Fluctuations and the energy-optimal control of chaos

The energy-optimal entraining of the dynamics of a periodically driven oscillator, moving it from a chaotic attractor to a coexisting stable limit cycle, is investigated via analysis of fluctuational transitions between the two states. The deterministic optimal control function is identified with the corresponding optimal fluctuational force, which is found by numerical and analog simulations.

متن کامل

Control of a Chemical Reactor with Chaotic Dynamics

In this paper, control of a non-isothermal continuous stirred tank reactor in which two parallel autocatalytic reactions take place has been addressed. The reactor shows chaotic behavior for a certain set of reactor parameters. In order to control the product concentration, an optimal state feedback controller has been designed. Since concentrations of reactor species are ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • I. J. Bifurcation and Chaos

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2002